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Abstract 
 
This paper describes a new class of mass 
properties measuring instruments which 
exhibit performance that is 10 to 100 times 
better than any measuring machine of 
conventional design.  This extraordinary 
magnitude of improvement is the result of a 
new technology: high speed closed-loop 
moment sensing.  The basic concept is similar 
to the old re-balance CG instruments which 
contained a counterbalance weight and a 
motor drive to reposition this weight so that a 
moment balance was achieved.  However, 
unlike the old “soft” technology which was 
very slow and unstable, the new technology 
achieves balance in less than one second, and 
because of the high loop gain, is also very 
stiff and stable.  Unlike most technology 
improvements, there is no tradeoff.  The new 
concept improves all of the performance 
criteria: sensitivity, dynamic range, linearity, 
stiffness, and overload protection.  Dynamic 
range and sensitivity are increased by a factor 
of 100.  Actual transducer dynamic range is 
200,000 to 1!  Linearity is improved from 
.05% to 0.001%.  Stiffness is increased by a 
factor of 5!  And finally, the new design has 
an overload capability at least 10 times as 
great as the conventional technology.  This 
sounds too good to be true, and at first we 
were skeptical, but extensive tests on a 
number of instruments of different sizes have 
failed to show up any disadvantage to the new 
method. 
 
Summary 
 
Prior to the discovery of high speed closed- 
loop moment sensing, the dynamic range of a 
moment measuring transducer in a CG 
instrument was limited to about 2000 to 1, 
and linearity was limited to about 0.05%.  
Attempts to improve either dynamic range or 
linearity were hampered by the basic trade-off 
between stiffness and sensitivity.  If the 

moment transducer was made softer to obtain 
greater dynamic range, then the test object 
would lean away from the measurement axis, 
and the system would rock back and forth for 
several minutes before the reading became 
steady, resulting in excessively long 
measurement time.  For tall test objects, this 
soft transducer system became unstable unless 
a vertical counterbalance was used.  If the 
moment transducer was made stiffer to 
eliminate these problems, then thermal 
expansion of the transducer and drift in the 
electronics caused major errors.  About a 
factor of two improvement could be made by 
using AC excitation with a load cell 
transducer, since the AC signal eliminated DC 
drift and placed the frequency of the signal in 
the low noise region of the amplifiers.  Other 
techniques involving matched pairs of 
transducers could reduce the effects of 
thermal expansion by another factor of two.  
However, the increased complexity of these 
features made it questionable whether the 
small improvement in dynamic range was 
worthwhile. 
 

 
 
    Figure 1 – Active Moment Transducer 
 Circuit measures current required to center moment 
arm. This current is proportional to CG offset. 
 



 

 
 
Figure 1A – This shows the three basic moment measuring concepts used in center of gravity instruments. The 
passive transducer (load cell, moment cell, or torsion rod with LVDT) deflects when a torque is applied. Linearity 
depends on the mechanical characteristics of a spring.  The axis of the instrument tilts under the influence of the 
offset moment.  The manual rebalance transducer is linear and accurate because the unbalance is counteracted by an 
equal and opposite moment, restoring the mechanism to its original position.  However, this type of system is very 
soft, requiring vertical counterbalance to prevent instability. Measurement time is quite long. The active rebalance 
transducer uses electrical feedback to accomplish the same goal as the manual transducer. High loop gain results in a 
stiff system which is also very fast.  
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Conventional instruments use a load cell or 
other displacement type transducer to measure 
the unbalance moment. All of these 
techniques require that the transducer deflect 
in order to produce an output. This type of 
technology employs a passive sensor. The 
new method disclosed in this paper uses an 
active transducer. Rather than allowing the 
sensor to deflect, an equal and opposite torque 
is applied to the measuring system to hold the 
measurement axis exactly vertical even 
though the overturning moment due to the test 
object CG offset is trying to tilt the axis. If a 
high loop gain is used, then the system is 
almost infinitely rigid.  The torque output to 
return the system to its neutral position is 
measured rather than measuring the deflection 
of a metal spring (for example, a load cell). 
Since the voltage required to excite a torque 
motor is in the order of 25 volts (as contrasted 
with the 25 millivolt output of a load cell), the 
electrical noise is insignificant.  
 
For practical reasons, it is necessary for the 
traditional deflection type transducer to be 
sized with a safety margin between the full 
scale moment of the instrument and the point 
where the transducer yields. This means that 
the full dynamic range of the transducer 
cannot be taken advantage of, since some of 
this range is used up by the safety factor. The 
active transducer described in this paper does 
not have this limitation.  If this new 
transducer is overloaded, the torque motor 
gently deflects until the system contacts a 
rugged stop.  Since the transducer cannot be 
overloaded, there is no need to throw away 
part of the dynamic range to provide a safety 
factor against possible damage. 
 
Instrument Description - When measuring 
explosive devices, or test parts which are 
difficult to fixture, it is often desirable to use 
an instrument which measures both Moment 

of Inertia (MOI) and Center of Gravity (CG) 
without the need for re-fixturing the test part.  
For such measurements, the test object center 
of gravity will rarely be coincident with the 
measurement axis.  This means that the 
instrument used to measure the combined 
moment of inertia and center of gravity must 
be capable of measuring moment of inertia 
through an axis which is considerably 
separated from the principle axis. The 
instruments described in this paper are 
capable of high accuracy over a wide range of 
test object weight and moment of inertia, and 
permit the measurement of moment of inertia 
about an axis which does not pass through the 
center of gravity of the test object. An 
inverted torsion pendulum provides time 
period data which can be easily related to test 
object moment of inertia, while center of 
gravity is determined by measuring the offset 
moment and dividing by the weight of the test 
object.   
 
Combined mass properties measurements are 
best made using a system incorporating gas 
bearings to support the test part and define the 
axis of rotation and either a (spherical) gas 
bearing or crossed web flexures to define the 
pivot axis for measuring offset moments.  It 
has long been recognized that the spherical 
gas bearing offers the combination of 
extremely low friction to both rotational and 
overturning moments, plus extremely high 
stiffness to forces at right angles to the 
rotational axis.   Crossed web flexures also 
afford high stiffness and low friction in pivot 
applications that involve very small rotational 
displacement.  Very small rotational 
displacements are assured by using moment 
restoration transducers which have an 
effective stiffness approaching infinity.  The 
specific selection of gas bearings and/or 
flexures is largely a function of application 
i.e. test part weight, MOI, probable CG offset,  
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Figures 2A and 2B 
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and required accuracy. When properly 
designed, the pivot axis remains fixed, 
independent of the weight of the test part or the 
location of the test part center of gravity.  Pivot 
axis definition of better than +/- 0.0005" is 
readily obtained. 

 
The two basic mechanical configurations used 
in the instruments described in this paper are 
illustrated in figure 2A and 2B. 

 
In figure 2A the test object is supported by a 
spherical bearing (using a test fixture if 
necessary). If no additional restraint 
mechanisms were used on this spherical 
bearing, then it would be free to turn about any 
axis which passed through the center of the 
sphere.  In order to convert this basic bearing 
into a useful mass properties instrument, a 
restraining method must be employed which 
keeps the test surface horizontal while 
measuring moment of inertia and center of 
gravity.  In our instrument, this restraint is 
provided by a hollow tube which extends from 
the base of the spherical bearing.  The lower 
end of this hollow tube is attached to a second 
(cylindrical) gas bearing which is connected 
through a moment restoration transducer string 
to the rigid instrument base structure, so that 
the deflection of this lower bearing is 
extremely small, even when large overturning 
moments are applied to the test surface of the 
instrument.  A torsion rod extends from the 
upper surface of the bearing (the test table) to a 
clamping mechanism at the bottom of the rod.  
When this clamping mechanism is released, the 
spherical bearing is free to turn about the 
vertical axis.   
 
In figure 2B, a flat gas bearing supports the test 
part and a cylindrical gas bearing defines the 
rotational axis.  The bearing and test table 
assembly is mounted on crossed web flexures 
which define the pivot axis.  A moment arm 
extends from the gas bearing body and is 
connected through a connecting rod to the 

moment restoration transducer.  The torsion 
rod is mounted similar to that in figure 2A.  
The measuring principles described below are 
the same for both configurations.  For 
convenience, the following discussion will 
refer to the spherical bearing configuration (fig. 
2A).   

 
Center of Gravity Measurement  

 
The center of gravity of the test object is 
determined by measuring the overturning 
moment at two or more rotational angles of the 
bearing.  The most accurate measurements are 
made using the technique shown in figure 3.  
By averaging the moments at rotational angles 
displaced by 180 degrees, certain errors are 
eliminated. 
 

 
 

Figure 3 
 

Leveling and Zero Offset are eliminated by averaging 
moments at 0 and 180 degrees. 
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In order to obtain maximum sensitivity from 
the instrument, a dual range moment 
transducer is used.  This type of transducer 
senses small displacements due to offset 
moments and applies a restoring torque to 
reposition the test table to its initial 
unloaded position.  This type of transducer 
permits a dynamic range of 200,000 to 1 or 
better.   
 
It should be pointed out that by virtue of the 
rotation of the bearing during measurement, 
it is possible to eliminate many of the 
sources of error which exist in static CG 
measuring systems.  Unbalance in the 
fixture can be eliminated by turning the 
bearing and adding counterweights or 
otherwise adjusting the fixture until a 
constant moment reading is obtained for all 
angles of rotation.  Zero shift of the force 
measuring system does not result in an error 
since moment measurement is relative i.e.  
measurements are made at 0o and 180o and 
the difference in moment is used to compute 
the CG location of the test part.  Similarly, 
errors in the leveling of the test surface will 
result in equal readings for angular locations 
spaced 180o apart.  The true CG location can 
be mathematically determined from the two 
readings, or the instrument can be re-leveled 
and additional data taken.  This permits even 
tall thin parts to be accurately measured.  
Since both axes of CG measurement are 
determined using the same transducer, only 
a single calibration point is needed to 
determine the moment sensitivity of the 
instrument.  Turning the instrument 180o 
detects any hysteresis changes in the 
transducer system.  A perfect system results 
in identical moment readings but opposite in 
direction (sign) for a 180o shift. 
 
True CG offset of test part will result in an 
offset moment which changes as a function 
of test table angle.  Maximum negative 
moment and maximum positive moment 
will be displaced by an angle of exactly 

180o.  Zero moment readings will be 
obtained 90o from these maximum values.                
 
Isolating tilt angle error from CG offset  
 
Figure 4a illustrates the effect of the lean of 
the interface surface on the accuracy of 
center of gravity measurement.  Even with a 
center of gravity instrument whose accuracy 
is better than 0.001", if the interface surface 
is not precisely perpendicular to the 
gravitational axis, then the test part center of 
gravity can be displaced by a considerable 
amount.  This offset CG due to the lean of 
the table can be distinguished from true CG 
offset by turning the test surface through an 
angle of 180o.  As the drawing indicates, an 
apparent CG offset due to the tilt of the test 
surface will not change as the table is 
turned, whereas true CG offset (figure 4b) of 
the test part results in an offset moment 
which changes as a function of test table 
rotation angle. 
 

 
 

Figures 4A and 4B 
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PERFORMANCE IMPROVEMENT DUE TO ACTIVE MOMENT TRANSDUCER 
 
 

   OLD PASSIVE TECHNOLOGY NEW ACTIVE TECHNOLOGY 
(Model KGR2000) (Model KSR2000) 

CG error: 
 1000 lb part 0.001 inch 0.0005 inch 
  100 lb part 0.010 inch 0.0012 inch 
   10 lb part 0.100 inch 0.0075 inch 
  5 lb part 0.5 inch 0.075  inch 
 
 
Full Scale Moment 2000 lb-inch 2000 lb-inch 
 
Sensitivity  1 lb-inch 0.07 lb-inch 
 
Linearity 0.1% 0.005% 
 
Maximum moment 2500 lb-inch 20,000 lb-inch 
(before damage) 
 
Deflection error 0.001" per 20" height 0.0002" per 20" height 
 
 
 
INSTRUMENT SIZES AVAILABLE 
 

  Recommended Payload Full Scale  MOI   
MODEL Weight Range Moment Accuracy CG Accuracy 

  (lb) (lb-in) (lb-in2) (lb-in) 
KSR330-6 0.25 - 20 6 0.1% + 0.03 0.1% + 0.0005 

KSR330-16 1 - 40 16 0.1% + 0.03 0.1% + 0.001 

KSR330-60 3 - 120 60 0.1% + 0.03 0.1% + 0.003 

KSR1320-150 50 - 800 150 0.1% + 0.2 0.1% + 0.01 

KSR1320-300 50 - 800 300 0.1% + 0.2 0.1% + 0.02 

KSR1320-600 100 - 1320 600 0.1% + 0.2 0.1% + 0.04 

KSR1320-1500 100-1320 1500 0.1% + 0.2 0.1% + 0.06 

KSR2200 100 - 2200 2500 0.1% + 0.7 0.1% + 0.1 

KSR6000 200 - 6000 5000 0.1% + 2 0.1% + 0.3 

KSR8000 200 - 8000 5000 0.1% + 2 0.1% + 0.3 

KSR13200 500 - 13200 8000 0.1% + 4 0.1% + 1.5 

KSR17000 500 - 17000 16000 0.1 + 10 0.1% + 8 

KSR20000 1000 - 20000 36000 0.1 + 10 0.1% + 8 
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 Pivot Axis Error  
 
The pivot axis on this instrument is a gas 
bearing.  The gap in this bearing is typically 
less than 0.001"; the dynamic centering 
action of the choked orifices of the bearing 
result in a stability of pivot axis typically 
less than plus/minus 0.0002" over the full 
range of weight of test parts.   
 
Moment Error  
 
The unbalance moment in the instrument is 
measured using a moment arm and 
transducer.  Linearity of the transducer is 
better than 0.001%. The lengths of the 
moment arm and transducer arm determine 
the moment amplification factor for the 
machine.  The effective length of these arms 
remains constant within 0.01% provided the 
ambient temperature does not vary more 
than plus/minus 10o F.  (Changes in ambient 
temperature will also change the dimensions 
of the test object and fixture, resulting in a 
shift in the center of gravity relative to the 
measurement axis of the instrument).  Since 
the weight of the test object is supported by 
the pivot axis, not the moment transducer, 
the full scale range of the moment readout 
may be chosen for any desired accuracy by 
selecting the appropriate transducer and 
moment arm length.  However, higher 
accuracy requires a smaller maximum over-
turning moment.  The 180o rotation feature 
of the instrument eliminates any error that 
might be introduced by transducer zero shift. 
Since the resolution of the instrument is so 
high, useful readings can be obtained for 
moments as small as 0.01% of full scale, 
even with a single range transducer.  Using 
proper calibration techniques and a dual 
range transducer, moment readings as small 
as 0.001% of full scale may be obtained.  
 
 

Calibration Weights - Center of Gravity  
 
Several certified and traceable calibration 
weights are supplied with these instruments.  
These weights, when placed in precisely 
located holes (certified and traceable), 
permit the creation of a precise overturning 
moment, and allow the computer to develop 
accurate calibration constants which correct 
the moment readout so that maximum 
accuracy is obtained for even small test 
parts.   
 
System Rigidity  
 
The spherical gas bearing combined with the 
stabilizing shaft and lower bearing results in 
an extremely rigid measuring system.  
Negligible error is introduced by system 
flexibility for test objects whose CG height 
is equal to or less than the maximum 
specified for each instrument size.  Tall thin 
parts may result in a small shift in measured 
CG due to the deflection of the test part if 
the test part CG is not centered, or if there is 
considerable tilt to the instrument.  This 
effect can easily be compensated for by 
simply centering the test part accurately and 
re-leveling the instrument after the test part 
has been mounted in place if leveling error 
persists.   
 
Moment of Inertia Measurement  
 
The instrument is converted to moment of 
inertia measurement by clamping the lower 
end of the torsion rod to create an inverted 
torsion pendulum.  In this mode, the test 
surface of the instrument oscillates in a 
rotational sense about a vertical axis through 
the center of the test surface.   Tare moment 
of inertia measurements are made by first 
measuring the time period (To) of oscillation 
with the test fixture mounted on the 
instrument (but without the test part).  The 
test part is then mounted in the fixture and a 
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second time period (Tx) measured.  The 
rotational moment of inertia for each of 
these two measurements may be computed 
by using the formula:  
 
   Part & Fixture MOI   Ix = CTx

2 
 

Tare (fixture) MOI    Io = CTo
2 

 
Net (Part)  MOI         Ip = Ix-Io 

 
Therefore      Ip = C(Tx

2 - To
2) 

 
where C is a calibration constant for the 
instrument, and is related to the torsional 
stiffness of the torsion rod.  The moment of 
inertia of the test part is then computed by 
subtracting the total inertia from the tare 
inertia (the inertia without the test part 
mounted on the instrument).   
 
Using this inverted torsion pendulum, 
accuracies as high as 0.01% have been 
achieved and measurement accuracies as 
great as 0.003% are possible using 
specialized measurement techniques (such 
as the averaging of ten readings and the use 
of calibration weights which duplicate the 
mass and moment of inertia of the test 
object).   
 
Unlike hanging wires or other traditional 
moment of inertia measuring methods, this 
technique closely defines the axis of 
measurement and permits measurements to 
be made through an axis which does not 
coincide with the center of gravity of the test 
object, without introducing aberrant motions 
such as swaying or bouncing.  Since the 
instrument is capable of determining CG 
location, moment of inertia measurements 
may be corrected to give the value which 
would be obtained if a measurement were 
made through the center of gravity.  This 
correction consists of squaring the 
displacement (x) of the center of gravity 
from the measurement axis and multiplying 

it times the mass of the test part (M).  This 
axis of translation moment of inertia value 
(Mx2) is then subtracted from the measured 
value to yield the value of moment of inertia 
through the test object center of gravity.   
 

Icg = Ip - Mx
2 

 
Alternatively, the MOI of the part about any 
desired vertical axis can be calculated by 
adding the product of part mass (M) and the  
square of the displacement (R) between CG 
and the desired axis. 
 

Ir = Icg + MR2 
 
Effect of Test Part Weight  
 
Since the weight of the test part is totally 
supported by the gas bearing and none of 
this force is applied to the torsion rod, the 
instrument is insensitive to test object 
weight and may be calibrated using a single 
test mass.  The moment of inertia indication 
will then be linear over the full range of 
weight and moment of inertia specified for 
the instrument.   
 
MOI Calibration Method 
 
Two identical calibration weights are placed 
on the center of the rotary table and a tare 
measurement of oscillation period (To) is 
made.  The two weights are then moved 
equal but opposite distances (R) from the 
center and a second oscillation period (Tx) 
is measured.  The change in MOI is equal to 
the combined mass of the two weights (M) 
times the square of the distance (R).  The 
calibration constant is: 

( )2
0

2

2

TT
MR

C
x −

=  

 
Using this method, all effects of instrument 
MOI, and MOI of the masses about their 
own CG are accounted for and the 
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calibration constant is a function only of 
certified and traceable mass and distance. 
Effect of Oscillation Amplitude  
 
These instruments exhibit negligible change 
in oscillation period for differences in 
oscillation amplitude as great as 3 to 1.  The 
highest accuracy versions of these 
instruments employ a second photoelectric 
sensing mechanism which re-sets the digital 
counter until a preset amplitude of 
oscillation is reached.  Using this technique, 
the time period of oscillation is always 
measured at precisely the same oscillation 
amplitude, eliminating this variable.  
Averaging several readings further improves 
accuracy. 
 
Minimum Moment of Inertia Which Can be 
Measured  
 
The smallest moment of inertia which can 
be measured with a particular size 
instrument is primarily a function of the tare 
moment of inertia of the instrument.  If the 
part inertia is 100 times the tare inertia of 
the instrument, then a small change in tare 
inertia will not appreciably affect accuracy.  
If the part inertia is 1/100th of tare inertia, 
then a 2oF change in ambient temperature 
will introduce a 0.5% error in the reading of 
the part inertia due to the small change in 
tare MOI which occurred after the tare 
measurement was made.  This means that 
frequent re-calibration and tare 
measurement are necessary to get 
meaningful results if the test part moment of 
inertia is much smaller than 1/20th of the 
tare moment of inertia of the instrument. 
 
Time period accuracy is another factor 
which limits the minimum MOI which can 
be measured accurately.  A typical standard 
instrument has a time period accuracy of 1 
part in 50,000.  This results in negligible 
error for objects which are large relative to 
the tare MOI of the machine. If we limit our 

measurement error to 0.25% of reading, then 
this time period limitation requires that the 
test object MOI be no smaller than 1/125th 
of the tare MOI.  
 
Since the fixture adds to the tare inertia of 
the measuring system, its moment of inertia 
should be made as small as possible when 
measuring parts with small moment of 
inertia.  For a maximum error of 0.25%, the 
total MOI of instrument and fixture should 
not exceed 35 times the MOI of the object 
under test. 
 
Torsion Pendulum Theory 
 
Consider the torsion pendulum of Figure 5a 
consisting of a disk of mass moment of 
inertia T lb-in-sec2, restrained in rotation by 
a wire of torsional stiffness K in-lb/radian.  
If the  disk is turned an initial angle Oo and 
sharply released, it will oscillate with 
damped harmonic motion as shown in 
Figure 5B.  The period of oscillation will 
remain constant and the amplitude of 
oscillation will gradually decay to zero.   
 

 
 

Figures 5A & 5B 
 
 
For purely viscous damping proportional to 
angular velocity, the equation of motion will 
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be:  
 

Iθ + Bθ + Kθ  = 0  
 
The solution to this differential equation is 
given below:  
 

tz ne ωθθ −= 0  ( )tz nω21sin −  

  exponential        oscillation at a  
   decay `       frequency ( 1-z2) w  

 
For very small damping, the torsion 
pendulum oscillates at its natural frequency 
"w", and the moment of inertia can be 
determined by the simple relationship:  
 

T = C T2 
 
where C is a calibration constant which may 
be determined experimentally by measuring 
the period of oscillation with a known 
additional moment of inertia, or may be 
calculated from the relationship:  
 

C = Kp2 
                                   4   
 
For significant damping, the actual period of 
oscillation is greater than the undamped 
natural period by an amount determined by 
the damping ratio "z".  If the torsion 
pendulum is being used as an instrument to 
measure moment of inertia, then the 
measured moment of inertia will be greater 
than the true value.  This error can be 
eliminated if the following equation is used 
in place of the previous equation.   
 

T = CT2 (1-z2)  
 
In order to make use of this equation, the 
value of the damping ratio, z, must be 
determined.  This is accomplished by noting 
the rate at which the amplitude of oscillation 
decays.  If we define the logarithmic 
decrement as the natural logarithm of the 
ratio of any two successive amplitudes, then 

the log decrement, d, of the starting 
amplitude, Oo, as compared to the peak 
amplitude On, after "n" cycles have elapsed 
is given by the equation:  
 









=

nn
d

θ
θ0ln

1
 

 
 
For small values of z, the logarithmic 
decrement, d, can be related to z by the 
following relationship:  
 

d = 2p z 
 
If we now count the number of oscillations 
of our torsion pendulum, n, for a decay in 
peak amplitude of 10/1, we may combine 
equations and solve for the error resulting 
from viscous damping:  
 
% error due to viscous damping: 100 z2  
 

% error  =  
( )
( ) 222

2 41.13100
2
10ln

NN
=

π
 

 
graphical solution to this equation is given 
in Figure 6.  To correct the measured value 
of moment of inertia, the amount shown on 
the graph should be subtracted from the 
measured value to yield the true value.  Note 
that the error is insignificant if more than 50 
oscillations are required for the amplitude to 
decay to one tenth of its original value.   
 
Effect of Entrapped Air 
A commonly overlooked source of error is 
due to the mass of entrapped air, especially 
in test objects which will operate in space, 
vented to vacuum.  For example, if a 
satellite structural component has an internal 
new volume of 3 ft3, the mass of entrapped 
air nominal sea level conditions will be 
approximately .25 lb. If this volume is 
located at 100 inches from the rotational 
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axis of the satellite, an error of 2500 lb-in2 is 
introduced. This may be significant enough 
to affect performance, particularly if the 
component itself has little mass.  
 

 
Figure 6 

 
Leveling Error 
As derived previously, the basic equation for 
a torsion pendulum is: 
 

Kt 
  I =   ------(T1

2 - To
2) 

4 p2 
 
In this equation, the torsion constant, Kt , is 
the spring rate of torsion rod.  In a real 
torsion pendulum measuring a test part with 
an offset CG there is a second "spring" 
force, namely the gravitational pendulum 
due to slight errors in the level condition of 
gas bearing.  If the torsion spring is removed 
from the system, this effect can easily be 
observed: the test part will oscillate back 

and forth and eventually come to rest with 
the test part CG at the low point of the 
bearing.  The effective spring rate of this 
gravity  pendulum will depend on:  
 
(a) The amount of tilt of the gas bearing. 
 
(b) The weight of the test part. 
 
(c) The CG offset of the part (horizontal 
distance between CG and rotational axis). 
 
 

 
Figure 7 

 
An error in the level condition of the torsion 
pendulum causes a gravity pendulum error. 

 
 
This gravity pendulum error can add to or 
subtract from the spring rate of the torsion 
rod, depending on the angular location of 
test part CG relative to the low point of the 
table.  If the low point is 90o from the CG, 
then the tilt angle will apply a static torque 
to the torsion rod.  This displaces the 
midpoint of oscillation, resulting in a small 
error due to amplitude decay.  A large tilt 
under these conditions could twist the 
torsion pendulum to the point that the timing 
sensor no longer functioned.  For a small 
angle of oscillation, a simple "grandfather 
clock" pendulum has a torsional stiffness. 
   

k = Md in - lb / rad 
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where M is the weight of the test part and d 
is the CG offset. 
 
 
For the torsion pendulum, the torsional 
stiffness due to an angle error in the level 
condition, X, is 
 

kG = Md sinX  in - lb / rad 
    
The equation for the torsion pendulum with 
the worst case orientation of tilt now 
becomes: 
 
         (Kt + Md sinX) 
I =   ------------------  (T1

2 - T0
2) 

              4p2 
 
To numerically evaluate the effect of this 
error term, consider this example: 
 
Test Part Radius of Gyration = 10.000 
inches 
 
Test Part Weight = 100lbs. 
 
Cg Offset, d, = 3.000 inches 
 
Torsion Rod Stiffness, Kt , = 150 lb-
in/radian 
 
Leveling error, X = 0.0005 radian 
 
Then 
 
Moment of Inertia Accuracy 
 
                  Md sinX      (100)3 (.0005) 
  Error   = ------------  = --------------- 
                      kt    150 
 
  Error = 0.1 % 
 
 
Effect of Internal Damping in the Torsion 
Pendulum  
 

There are two common sources of damping 
in a torsion pendulum used to measure 
moment of inertia; first, the windage of the 
test part contributes some damping 
(depending on the diameter and the shape of 
the part); second, the centering bearing and 
the internal losses in the wire damp the 
oscillations.  An important observation can 
be made with regard to internal damping.  
Since the effect of a given amount of 
damping, B, is inversely proportional to the 
moment of inertia of the oscillating 
assembly, increasing the amount of moment 
of inertia will decrease the effect of a given 
amount of damping.  This observation 
assures us that if the basic damping of the 
torsion pendulum when measuring the tare 
moment of inertia is small enough so that its 
resulting change in time period can be 
neglected, then the damping of the basic 
torsion pendulum can also be neglected 
when measuring a test part.  Or, stated very 
simply, if more than 100 oscillations are 
required for the peak amplitude of the 
torsion pendulum to decay to 1/10 of its 
original value, when no object is mounted 
on the torsion pendulum, then the effect of 
internal damping in the torsion pendulum 
can be neglected.  This, in fact, is the case 
for all gas bearing torsion pendulums which 
have been constructed by Space Electronics.   
 
A second observation can also be made with 
regard to the effect of damping.   Since the 
change in the apparent moment of inertia is 
a function of the ratio of the viscous 
damping to the critical damping for the 
system, and since the critical damping is 
proportional to the square root of the torsion 
spring constant, then increasing the torsional 
spring constant will reduce the effect of 
viscous damping, whether it be internal in 
the instrument or due to windage of the test 
part.  This means that a stiffer torsion 
pendulum will exhibit less error due to 
damping.  This observation does not hold 
true when the velocity of the oscillating 
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pendulum reaches the point where the air 
becomes turbulent.  
 
The effect of windage damping may be 
eliminated by operating the instrument in a 
vacuum.  Operating the instrument in a 
vacuum will increase the pressure drop in 
the gas bearing and result in altered lifting 
capability of the bearing.  If such use is 
contemplated, then it should be specified 
when the instrument is originally purchased, 
so that the bearing may be designed for this 
environment. 
 
Factors Affecting Torsion Spring Stiffness  
 
Most sources of error are minimized by 
making the torsion spring as stiff as 
possible.  The error due to viscous damping 
decreases in direct proportion to the torsion 
spring constant.  So does the error due to the 
gravity force with an offset CG (when the 
axis is not exactly vertical), drafts, seismic 
perturbations, and non-viscous friction.  The 
stiffness of the torsion spring is limited by 
the following factors:  
 
1.  The tare time period must be long 
enough to permit the required accuracy (i.e.  
a limit exists on the response time of the 
sensing mechanism and on the minimum 
resolution of the period counter).   
 
2.  If the spring is too stiff, then the 
oscillation period of the torsion pendulum 
may approach the first resonant frequency of 
the test part.  This would cause the test part 
to de-couple so that the instrument measured 
only part of the moment of inertia.  (Or it 
could result in fatigue or failure of the test 
part).   
 
3.  A high resonant frequency of the torsion 
pendulum places greater demands on the 
rigidity of the test fixture, and on the 
repeatability of fastening the part into the 
test fixture.   

 
4.  To prevent fatigue aging of the torsion 
spring, it must be deflected well below its 
elastic limit.  For a stiffer spring, this 
generally means that the amplitude of 
oscillation of the torsion pendulum must be 
made increasingly smaller to stay within this 
limit.  This in turn affects the timing 
accuracy indirectly, since the displacement 
error of the sensing mechanism represents a 
greater proportion of the period of 
oscillation.   
 
5.  As the torsion spring is made more stiff, 
a given initial displacement of the torsion 
pendulum will result in greater velocity at 
the midpoint of oscillation.  When testing 
parts of large diameter and irregular surface 
area, it is possible that the windage friction 
will not any longer be viscous due to 
turbulence.  This parameter is the most 
difficult to evaluate since the stiffness of this 
spring may be minimizing the error due to 
windage drag at a faster rate than the 
turbulence is introducing non-linearities.  
Except for extremely unusual parts such as 
small satellites with extended solar panels, it 
is probably true that the increase in windage 
damping is outweighed by the benefits of 
the stiffer torsion rod.   
 
6.  The ratio of vertical rocking resonant 
frequency to torsional resonance must be at 
least 10/1 to prevent any excitation of this 
mode.   
 
The ideal torsion stiffness results in a time 
period of oscillation of 0.3 seconds for the 
tare, 1 second for the minimum moment of 
inertia, and 30 seconds for the maximum 
moment of inertia.  It should be pointed out 
that it is a relatively easy matter to change 
the diameter of the torsion rod without 
affecting any of the other parts of the 
instrument (except the inside diameter of the 
wire clamp) so that this torsion stiffness 
could easily be changed if experimental data 
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indicated a need.   
 
Most people intuitively feel that the time 
period could be longer than what is 
indicated by the mathematical analysis.  We 
think that this intuitive feeling comes from 
the early days when torsion pendulums were 
timed by a stop watch and the timing 
accuracy was the largest source of error.  
Experimental data taken on over one 
hundred pendulums has always confirmed 
our theory that the stiffer torsion rod yields 
the most accurate results.   
 
Centering Bearing  
 
A stiff centering bearing is essential to the 
accurate operation of the torsion pendulum.   
 
1.  It eliminates the horizontal motion of the 
pendulum which would alter the relationship 
between the moment of inertia and time 
period of oscillation.   
 
2.  It greatly reduces the sensitivity of the 
pendulum to seismic motions due to external 
vibrations.  
3.  It eliminates the most significant source 
of timing error--the inability of any sensing 
device to discriminate between rotational 
motion and motion in a purely horizontal 
sense.   
 
4.  It accurately defines the axis of rotation 
of the pendulum permitting definition of the 
measurement axis.   
 
5.  When the part has a center of gravity 
which is not located directly on the 
rotational axis, it prevents the part from 
rotating about the center of gravity and it 
also prevents a bending moment being 
applied to the torsion rod due to the torque 
produced by the offset CG.   
 
6.  Most important, the bearing keeps the 
rotational axis vertical minimizing gravity 

errors with offset CG.   
 
The ideal bearing should have no runout, 
minimum viscous damping, and no sliding 
friction, and infinite rigidity to both 
horizontal and bending forces.  A gas 
bearing has both the smallest runout and the 
smallest amount of friction of any known 
type of bearing.  If the bearing is composed 
of simple shapes, then the axis of rotation 
can be more closely defined than with any 
other bearing system.   In actual practice, the 
stiffness of the bearing is limited by two 
factors: the tare of the inner race of the 
bearing which increases with both length 
and diameter, and the forces introduced by 
the flow of gas in the bearing.  These forces 
can be either of a motoring type in which the 
gas flows in a circle and produces a constant 
torque in one direction, or of a self-centering 
type in which there is a null position, or the 
forces can be oscillatory in a horizontal 
mode due to pneumatic hammer instability.  
These bearing forces can be minimized by 
keeping the gas pressure to a minimum (i.e.  
employing a conservative design) and by 
using a certain design technique which 
minimizes the chance of instability and 
makes it possible to control the flow 
characteristics of the bearing very carefully.   
 
Summary of Moment of Inertia Error 
Sources  
 
The ideal torsion pendulum has three 
characteristics:  
 
1.  Its motion is purely rotational about a 
well defined axis.   
 
2.  The only forces acting on the torsion 
pendulum are the rotational stiffness of the 
torsion spring and the inertia of the rotating 
assembly plus a relatively small amount of 
pure viscous damping.   
 
3.  The method of timing the period of 
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oscillation exhibits a high degree of 
repeatability and linearity.   
 
Unwanted motions of the torsion pendulum 
include horizontal motion due to an 
unbalance created during the initial starting 
of the oscillation, an external source of 
vibration, the natural unbalance force which 
is created when an object is rotated about an 
axis other than its principal axis; vertical 
motion due to unbalance in starting and/or 
external vibrations, and rocking motion due 
to starting unbalance, external vibrations, or 
dynamic unbalance in the rotating system 
which includes the torsion pendulum and the 
test part.  External forces which are 
undesirable include: gravity pendulum 
forces which result when the part center of 
gravity is not on the rotational axis and the 
rotational axis is not exactly vertical; the 
increase in measured MOI due to entrapped 
air within the objects under test (significant 
for object which fly in the void of space); 
viscous damping due to windage (which will 
vary as a function of the external dimensions 
of the test part); drafts, seismic forces which 
occur when the center of gravity is offset 
from the rotational axis and the structure of 
the torsion pendulum is subject to external 
vibration; and non-viscous friction in the 
bearing of the torsion pendulum.  Absolute 
calibration of timing accuracy, linearity of 
timing accuracy, and long term stability are 
of significance.  The very close tolerance 
required of the instrument, however, places 
extreme demands on the repeatability and 
short term stability of the method used for 
timing of the period of oscillation.  The 
linearity of the torsion spring has not been 
listed as a source of error, since it is possible 
to time the period of oscillation at a certain 
pre-established amplitude.  In actual 
practice, however, the torsion spring is 
generally quite linear because of the 
symmetry of the torsion pendulum 
configuration and the fact that the spring 
must be operated well below its elastic limit 

to prevent changes in spring constant with 
use.   
 
Errors can be minimized by using a very 
stiff low friction bearing and by making the 
torsion spring as stiff as possible.  The 
stiffness of the bearing is limited by the tare 
moment of inertia of the bearing and by the 
motor forces of the bearing.  The center of 
gravity of the test part should be located as 
closely as possible to the rotational axis of 
the torsion pendulum.   
 
Fixturing Error 
 
Although this source of error is not a factor 
in the machine itself, the total measurement 
error is seriously affected by the ability of 
the test operator to position the object under 
test accurately relative to the measurement 
axis of the machine.  The design of fixtures 
is discussed in the SAWE paper entitled 
Spin and Static Balance Fixtures by Richard 
Boynton and L.G. Hollenbeck (Paper 
number 1667, published May 1985).  
 
Fixturing accuracy is of minimal importance 
when measuring the moment of inertia of 
test objects (unless the object is tall and 
thin).  The reason for this is that the error is 
proportional to the ratio of the square of the 
fixturing error relative to the square of the 
radius of gyration of the object.  Since the 
radius of gyration of the object is usually 
large relative to the fixturing error, squaring 
these two numbers results in a very small 
ratio.  For example, if the fixturing error is 
0.010 inch and the radius of gyration is 10 
inches, then the moment of inertia 
measurement error is only 0.0001%! 
 
Center of gravity accuracy is equal to 
fixturing accuracy.  If the fixturing error is 
0.010 inch, then the resulting CG error is 
also 0.010 inch.  When measurements are 
made on a machine with a 0.001 inch 
maximum error for the weight of the object 
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being measured, then the fixturing error is 
the predominate source of error. 
 
Instrument Foundation 
 
Users of spin balance machines have grown 
to expect that the mass properties machine 
will require a heavy concrete block for 
optimum performance.  This is true of a spin 
balance machine, since this type of machine 
requires an "infinite" mass to react against 
horizontally so that centrifugal forces are 
applied to the transducers while the unit 
under test is spinning.  This same heavy 
block is not required for the mass properties 
machines described in this paper.  All that is 
needed is a concrete floor on ground level 
which is sufficient rigid so that it will not 
deflect under the weight of machine and test 
object.  Generally an ordinary 6-inch thick 
concrete floor is sufficient.  It is desirable to 
locate the machine in an area that is free 
from vibration and drafts. 
 
Computer Control 
 
This instrument is supplied with an on-line 
microcomputer that controls the operation of 
the instrument and also provides a hard copy 
print out of the test data.  Custom programs 
can create specific report formats or instruct 
the machine operator where to add 
correction weights (ballast) to adjust the 
center of gravity so that it is coincident with 
the flight (geometric) axis. 
 
Conclusions 
 
A dramatic discovery by the engineers at 
Space Electronics has resulted in a new class 
of mass properties measuring machines 
whose center of gravity accuracy is 10 to 
100 times better than the previous versions 
of these instruments.  This has reduced 
measurement error to a point where 
fixturing error is the limiting factor.  One 
machine can now measure a range of test 

object sizes previously requiring two 
different size machines.  The new more 
accurate machines have the additional 
advantage that they are much more resistant 
to accidental overload than the older less 
accurate machines. 
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